CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2 Mark Scheme				Syllabus	Paper	
		(Cam	oridge International AS	A Level – October/November 2015	9702	23	
1	(a)	energy or <i>W</i> : kg m ² s ⁻² or power or <i>P</i> : kg m ² s ⁻³		M1				
		inte or	ensity	r or <i>I</i> : kg m ² s ⁻² m ⁻² s ⁻¹ (from the second se	om use of energy expression)			
			m² s⁻	3 m ⁻² (from use of power	expression)			
		ind	icatio	n of simplification to kgs	5-3		A1	[2]
	(b)	(i)	<i>ρ</i> : k	gm ⁻³ , c:ms ⁻¹ , f:s ⁻¹ , x ₀	: m		M1	
				stitution of terms in an a no units	ppropriate equation and simplification t	o show <i>K</i>	A1	[2]
		(ii)	I =	$20 \times 1.2 \times 330 \times (260)^2 \times$	$(0.24 \times 10^{-9})^2$		C1	
			=	$3.1 \times 10^{-11} \ (W m^{-2})$			C1	
			=	31 (30.8)pW m ⁻²			A1	[3]
	(a)	(i)	(the	loudspeakers) are conr	nected to the same signal generator		B1	[1]
		(ii)	1.	of zero and so) have phase difference of zero or path	difference		
				either or	constructive interference displacement larger		B1	[1]
			2.	$(n + \frac{1}{2}) \times 2\pi$ rad or path) have phase difference of $(n + \frac{1}{2}) \times 36$ a difference of $(n + \frac{1}{2})\lambda$ and so destructive interference	0° or		
				or	displacements cancel/smaller		B1	[1]
			3.	or $2\pi n$ rad or path differ		e of <i>n</i> 360°		
				either or	constructive interference displacement larger		B1	[1]
	(b)	tim	e pe	iod = 0.002s or 2ms			C1	
		wa	ve dr	awn is half time period			B1	
		amplitude 1.0 cm (same as Fig. 2.2)					B1	[3]

Pa	age 3		Mark Scheme	Syllabus	Рар	er
		(Cambridge International AS/A Level – October/November 2015	9702	23	
3	(a) ((i)	1. $s = ut + \frac{1}{2}at^2$			
			$192 = \frac{1}{2} \times 9.81 \times t^2$		C1	
			t = 6.3 (6.26) s		A1	[2]
			2. max E_k (= <i>mgh</i>) = 0.27 × 9.81 × 192		C1	
			or			
			calculation of v (= 61.4) and use of $E_{\rm K}$ (= ½ mv^2) = ½ × 0.27 ×	(61.4) ²	(C1)	
			$\max E_{k} = 510 \ (509) \mathrm{J}$		A1	[2]
	(i	(ii) velocity is proportional to time or velocity increases at a constant rate				
			as acceleration is constant or resultant force is constant		B1	[1]
	(i	ii)	use of $v = at$ or $v^2 = 2as$ or $E = \frac{1}{2}mv^2$ to give $v = 61(.4) \text{ m s}^{-1}$		B1	[1]
	(b) ((i)	R increases with velocity		B1	
			resultant force is $mg - R$ or resultant force decreases		B1	
			acceleration decreases		B1	[3]
	(i	ii)	at $v = 40 \mathrm{ms^{-1}}$, $R = 0.6 \mathrm{(N)}$		C1	
			0.27 × 9.8 – 0.6 = 0.27 × <i>a</i>			
			<i>a</i> = 7.6 (7.58) m s ⁻²		A1	[2]
	(i	ii)	<i>R</i> = weight for terminal velocity		B1	
			<i>either</i> weight requires velocity to be about 80 m s^{-1} or at 60 m s^{-1} , <i>R</i> is less than weight			
			so does not reach terminal velocity		B1	[2]
4	(a)	(i)	reaction/vertical force = weight – $P \cos 60^{\circ}$		C1	
			= 180 – 35 cos 60°			
			= 160 (163)N		A1	[2]
	(i	ii)	work done = $35 \sin 60^{\circ} \times 20$		C1	
			= 610 (606) J		A1	[2]

Page 4		4	Mark Scheme Sylla	bus Par	Paper	
	-		Cambridge International AS/A Level – October/November 2015 970			
	(b)	(i)	work done by force <i>P</i> = work done against frictional force	B1	[1]	
		(ii)	horizontal component of <i>P</i> is equal and opposite to frictional force	B1		
			vertical component of P + normal reaction force equal and opposite to we	ight B1	[2]	
5	(a)	(i)	resistance = V/I	B1		
			very high/infinite resistance at low voltages	B1		
			resistance decreases as V increases	B1	[3]	
		(ii)	p.d. from graph 0.50(V)	C1		
			resistance = $0.5/(4.4 \times 10^{-3})$			
			= 110 (114) Ω	A1	[2]	
	(b)	(i)	current (= $1.2/375$) = 3.2×10^{-3} A	A1	[1]	
		(ii)	current in diode = 4.4×10^{-3} (A) total resistance = $1.2/4.4 \times 10^{-3}$ = 272.7 (Ω)	C1		
			resistance of $R_1 = 272.7 - 113.6 = 160 (159)\Omega$	A1		
			or			
			p.d. across diode = 0.5 V and p.d. across $R_1 = 0.7 V$	(C1)		
			resistance of $R_1 = 0.7/4.4 \times 10^{-3}$ = 160 (159) Ω	(A1)	[2]	
		(iii)	power = IV or I^2R or V^2/R	(, (1) C1	[~]	
		(,	ratio = $(4.4 \times 0.5)/(3.2 \times 1.2)$	0.		
			or $[(4.4)^2 \times 114]/[(3.2)^2 \times 375]$			
			or $[(0.5)^2 \times 375]/[114 \times (1.2)^2]$ = 0.57	A1	[2]	
6	(2)	W(2)	ves from loudspeaker (travel down tube and) are reflected at closed end	B1		
0				Ы		
			waves (travelling) in opposite directions with same frequency/wavelength rlap	B1	[2]	
	(b)	(i)	0.51 m	A1	[0]	
			0.85 m	A1	[2]	
		(ii)	A at open end, N at closed end, with an N and A in between, equally space (by eye)	ced B1	[1]	

Page 5		Mark Scheme	Syllabus	Paper	
		Cambridge International AS/A Level – October/November 2015	9702	23	
7	(a)	stress or $\sigma = F/A$ max. tension = UTS × A = 4.5 × 10 ⁸ × 15 × 10 ⁻⁶ = 6800 (6750)N		C1 A1	[2]
	(b)	ho = m/V		C1	
		weight = $mg = \rho Vg = \rho ALg$ 6750 = 7.8 × 10 ³ × 15 × 10 ⁻⁶ × L × 9.81		C1	
		$L = 5.9 (5.88) \times 10^3 \mathrm{m}$		A1	
		or			
		maximum mass = $6750/9.81 = 688 \text{ kg}$ mass per unit length = $\rho A = 0.117 \text{ kg m}^{-1}$ L = $688/0.117 = 5.9 \times 10^3 \text{ m}$		(C1) (C1) (A1)	
		or			
		maximum mass = $6750/9.81 = 688 \text{ kg}$ volume = $m/\rho = 0.0882 \text{ m}^3 = LA$ $L = 0.0882/15 \times 10^{-6} = 5.9 \times 10^3 \text{ m}$		(C1) (C1) (A1)	[3]
8	(a)	mass-energy proton number or charge nucleon number		B2	[2]
	(b)	(i) $E_k = \frac{1}{2} mv^2$ and $p = mv$ with working leading to			
		[via $E_k = \frac{1}{2}m^2v^2/m$ or $\frac{1}{2}m(p/m)^2$]			
		to $E_k = \frac{p^2}{2m}$		B1	[1]
		(ii) $p = (2E_km)^{\frac{1}{2}}$ hence $(2[E_km]_{\alpha})^{\frac{1}{2}} = (2[E_km]_{Th})^{\frac{1}{2}}$		C1	
		$2\times [E_k]_{Th}\times 234=2\times 6.69\times 10^{-13}\times 4$		C1	
		$[E_k]_{Th} = 1.14 \times 10^{-14} \text{ J}$ = 71(.5) keV		A1	
		or			
		calculation of speed of α -particle = $1.42 \times 10^7 m s^{-1}$ calculation of momentum of α -particle/nucleus = $9.43 \times 10^{-20} N s$		(C1)	
		$[E_k]_{Th}$ = 1.14 × 10 ⁻¹⁴ J = 71(.5) keV		(C1) (A1)	[3]